Зміст
При вивченні поведінки газів у фізиці багато уваги приділяється ізопроцесам, тобто таким переходам між станами системи, під час яких зберігається один термодинамічний параметр. Однак існує газовий перехід між станами, який не є ізопроцесом, але який відіграє важливу роль у природі та техніці. Йдеться про адіабатичний процес. У даній статті розглянемо його докладніше, акцентуючи увагу на тому, що таке показник адіабати газу.
Адіабатичний процес

Згідно з термодинамічним визначенням, під адіабатичним процесом розуміють такий перехід між початковим і кінцевим станами системи, в результаті якого не існує обміну теплом між зовнішнім середовищем і досліджуваної системою. Такий процес можливий при наявності наступних двох умов:
- теплопровідність між зовнішнім середовищем і системою з тієї чи іншої причини є низькою;
- швидкість процесу велика, тому обмін теплом не встигає відбуватися.
У техніці адіабатний перехід використовують як для розігріву газу при його різкому стисненні, так і для його охолодження під час швидкого розширення. У природі розглянутий термодинамічний перехід проявляє себе, коли повітряна маса піднімається або опускається по схилу пагорба. Такі підйоми і спуски призводять до зміни точки роси в повітрі і до виникнення опадів.
Рівняння Пуассона для адіабати ідеального газу

Ідеальний газ являє собою систему, в якій частинки рухаються хаотично з великими швидкостями, не взаємодіють один з одним і є безрозмірними. Така модель є дуже простою з точки зору її математичного опису.
Згідно з визначенням адіабатного процесу, можна записати наступний вираз відповідно до першого закону термодинаміки:
dU = -P*dV.
Іншими словами, газ, розширюючись або стискаючись, здійснює роботу P * dV за рахунок відповідної зміни своєї внутрішньої енергії dU.
У разі ідеального газу, якщо скористатися рівнянням його стану (закон Клапейрона-Менделєєва), то можна отримати наступний вираз:
P*Vγ = const.
Ця рівність називається рівнянням Пуассона. Люди, які знайомі з фізикою газів, помітять, що якщо величина γ буде дорівнює 1, то рівняння Пуассона перейде в закон Бойля-Маріотта (ізотермічний процес). Однак таке перетворення рівнянь неможливе, оскільки γ для будь-якого типу ідеального газу більше одиниці. Величина γ (гамма) називається показником адіабати ідеального газу. Розглянемо докладніше його фізичний сенс.

Що таке показник адіабати?
Показник γ, який з`являється в рівнянні Пуассона для газу ідеального, являє собою відношення теплоємності при постійному тиску до аналогічної величини, але вже при постійному обсязі. У фізиці теплоємністю називають величину теплоти, яку потрібно передати даній системі або забрати у неї, щоб вона змінила свою температуру на 1 Кельвін. Будемо позначати символом CP ізобарну теплоємність, а символом CV - ізохорний. Тоді для γ справедливо рівність:
γ = CP/CV.
Оскільки γ завжди більше одного, то він показує, у скільки разів ізобарна теплоємність досліджуваної газової системи перевищує аналогічну ізохорную характеристику.
Теплоємності CP і CV
Щоб визначити показник адіабати, слід добре розуміти сенс величин CP і CV. Для цього проведемо наступний уявний експеримент: уявімо, що газ знаходиться в закритій системі в посудині з твердими стінками. Якщо нагрівати посудину, то все повідомлене тепло в ідеальному випадку перейде у внутрішню енергію газу. У такій ситуації буде справедлива рівність:
dU = CV*dT.
Величина CV визначає кількість теплоти, яке слід передати системі, щоб ізохорно нагріти її на 1 до.
Тепер припустимо, що газ знаходиться в посудині з рухомим поршнем. В процесі нагріву такої системи поршень буде переміщатися, забезпечуючи підтримку постійного тиску. Оскільки ентальпія системи в такому випадку буде дорівнює добутку ізобарної теплоємності на зміну температури, то перший закон термодинаміки набуде вигляду:
CP*dT = CV*dT + P*dV.
Звідси видно, що CP>CV, так як в разі ізобарного зміни станів необхідно витрачати тепло не тільки на підвищення температури системи, а значить, і її внутрішньої енергії, але і на виконання газом роботи при його розширенні.
Величина γ для газу ідеального одноатомного

Найпростішою газовою системою є одноатомний ідеальний газ. Припустимо, що ми має 1 моль такого газу. Нагадаємо, що в процесі ізобарного нагріву 1 моль газу всього на 1 Кельвін, він здійснює роботу, рівну величині R. Цим символом прийнято позначати універсальну газову постійну. Вона дорівнює 8,314 Дж/(моль*К). Застосовуючи останній вираз в попередньому пункті для даного випадку, отримуємо таку рівність:
CP = CV + R.
Звідки можна визначити значення ізохорної теплоємності CV:
γ = CP/CV;
CV = R/(γ-1).
Відомо, що для одного моль одноатомного газу значення изохорной теплоємності становить:
CV = 3/2*R.
З останніх двох рівностей випливає значення показника адіабати:
3/2*R = R/(γ-1) =>
γ = 5/3 ≈ 1,67.
Відзначимо, що величина γ залежить виключно від внутрішніх властивостей самого газу (від багатоатомності його молекул) і не залежить від кількості речовини в системі.
Залежність γ від числа ступенів свободи
Вище було записано рівняння для ізохорної теплоємності одноатомного газу. З`явився в ньому коефіцієнт 3/2 пов`язаний з кількістю ступенів свободи у одного атома. У нього існує можливість рухатися тільки в одному з трьох напрямків простору, тобто існують тільки поступальні ступені свободи.

Якщо система утворена двоатомними молекулами, то до трьох поступальних додаються ще дві обертальні ступеня. Тому вираз для CV набуває вигляду:
CV = 5/2*R.
Тоді значення γ буде дорівнює:
γ = 7/5 = 1,4.
Відзначимо, що насправді існує у двоатомної молекули ще одна коливальна ступінь свободи, але при температурах в кілька сотень Кельвін вона не задіюється і не вносить вклад в теплоємність.
Якщо молекули газу складаються з більш, ніж двох атомів, тоді у них буде 6 ступенів свободи. Показник адіабати при цьому буде дорівнює:
γ = 4/3 ≈ 1,33.
Таким чином, при збільшенні числа атомів в молекулі газу величина γ зменшуватися. Якщо побудувати графік адіабати в осях P-V, то можна помітити, що крива для одноатомного газу буде вести себе більш різко, ніж для багатоатомного.
Показник адіабати для суміші газів

Вище ми показали, що величина γ від хімічного складу газової системи не залежить. Однак вона залежить від кількості атомів, яке становить її молекули. Припустимо, що система складається з n компонент. Атомна частка компонента i в суміші дорівнює ai. Тоді для визначення показника адіабати суміші можна використовувати наступний вираз:
γ = ∑i=1N(ai*γi).
Де γi - це величина γ для i-го компонента.
Наприклад, цей вираз можна застосувати для визначення γ повітря. Оскільки він складається на 99 % з двоатомних молекул кисню і азоту, то його показник адіабати повинен бути дуже близький до значення 1,4, що підтверджується при експериментальному визначенні цієї величини.